35 research outputs found

    Enhanced perception in volume visualization

    Get PDF
    Due to the nature of scientic data sets, the generation of convenient visualizations may be a difficult task, but crucial to correctly convey the relevant information of the data. When working with complex volume models, such as the anatomical ones, it is important to provide accurate representations, since a misinterpretation can lead to serious mistakes while diagnosing a disease or planning surgery. In these cases, enhancing the perception of the features of interest usually helps to properly understand the data. Throughout years, researchers have focused on different methods to improve the visualization of volume data sets. For instance, the definition of good transfer functions is a key issue in Volume Visualization, since transfer functions determine how materials are classified. Other approaches are based on simulating realistic illumination models to enhance the spatial perception, or using illustrative effects to provide the level of abstraction needed to correctly interpret the data. This thesis contributes with new approaches to enhance the visual and spatial perception in Volume Visualization. Thanks to the new computing capabilities of modern graphics hardware, the proposed algorithms are capable of modifying the illumination model and simulating illustrative motifs in real time. In order to enhance local details, which are useful to better perceive the shape and the surfaces of the volume, our first contribution is an algorithm that employs a common sharpening operator to modify the lighting applied. As a result, the overall contrast of the visualization is enhanced by brightening the salient features and darkening the deeper regions of the volume model. The enhancement of depth perception in Direct Volume Rendering is also covered in the thesis. To do this, we propose two algorithms to simulate ambient occlusion: a screen-space technique based on using depth information to estimate the amount of light occluded, and a view-independent method that uses the density values of the data set to estimate the occlusion. Additionally, depth perception is also enhanced by adding halos around the structures of interest. Maximum Intensity Projection images provide a good understanding of the high intensity features of the data, but lack any contextual information. In order to enhance the depth perception in such a case, we present a novel technique based on changing how intensity is accumulated. Furthermore, the perception of the spatial arrangement of the displayed structures is also enhanced by adding certain colour cues. The last contribution is a new manipulation tool designed for adding contextual information when cutting the volume. Based on traditional illustrative effects, this method allows the user to directly extrude structures from the cross-section of the cut. As a result, the clipped structures are displayed at different heights, preserving the information needed to correctly perceive them.Debido a la naturaleza de los datos científicos, visualizarlos correctamente puede ser una tarea complicada, pero crucial para interpretarlos de forma adecuada. Cuando se trabaja con modelos de volumen complejos, como es el caso de los modelos anatómicos, es importante generar imágenes precisas, ya que una mala interpretación de las mismas puede producir errores graves en el diagnóstico de enfermedades o en la planificación de operaciones quirúrgicas. En estos casos, mejorar la percepción de las zonas de interés, facilita la comprensión de la información inherente a los datos. Durante décadas, los investigadores se han centrado en el desarrollo de técnicas para mejorar la visualización de datos volumétricos. Por ejemplo, los métodos que permiten definir buenas funciones de transferencia son clave, ya que éstas determinan cómo se clasifican los materiales. Otros ejemplos son las técnicas que simulan modelos de iluminación realista, que permiten percibir mejor la distribución espacial de los elementos del volumen, o bien los que imitan efectos ilustrativos, que proporcionan el nivel de abstracción necesario para interpretar correctamente los datos. El trabajo presentado en esta tesis se centra en mejorar la percepción de los elementos del volumen, ya sea modificando el modelo de iluminación aplicado en la visualización, o simulando efectos ilustrativos. Aprovechando la capacidad de cálculo de los nuevos procesadores gráficos, se describen un conjunto de algoritmos que permiten obtener los resultados en tiempo real. Para mejorar la percepción de detalles locales, proponemos modificar el modelo de iluminación utilizando una conocida herramienta de procesado de imágenes (unsharp masking). Iluminando aquellos detalles que sobresalen de las superficies y oscureciendo las zonas profundas, se mejora el contraste local de la imagen, con lo que se consigue realzar los detalles de superficie. También se presentan diferentes técnicas para mejorar la percepción de la profundidad en Direct Volume Rendering. Concretamente, se propone modificar la iluminación teniendo en cuenta la oclusión ambiente de dos maneras diferentes: la primera utiliza los valores de profundidad en espacio imagen para calcular el factor de oclusión del entorno de cada pixel, mientras que la segunda utiliza los valores de densidad del volumen para aproximar dicha oclusión en cada vóxel. Además de estas dos técnicas, también se propone mejorar la percepción espacial y de la profundidad de ciertas estructuras mediante la generación de halos. La técnica conocida como Maximum Intensity Projection (MIP) permite visualizar los elementos de mayor intensidad del volumen, pero no aporta ningún tipo de información contextual. Para mejorar la percepción de la profundidad, proponemos una nueva técnica basada en cambiar la forma en la que se acumula la intensidad en MIP. También se describe un esquema de color para mejorar la percepción espacial de los elementos visualizados. La última contribución de la tesis es una herramienta de manipulación directa de los datos, que permite preservar la información contextual cuando se realizan cortes en el modelo de volumen. Basada en técnicas ilustrativas tradicionales, esta técnica permite al usuario estirar las estructuras visibles en las secciones de los cortes. Como resultado, las estructuras de interés se visualizan a diferentes alturas sobre la sección, lo que permite al observador percibirlas correctamente

    Inspección Interactiva de Estructuras Anatómicas Tubulares

    Get PDF
    El objetivo que se persigue con esta tesis es analizar y evaluar los diferentes sistemas de visualización de datos volumétricos utilizados para realizar inspecciones virtuales de estructuras tubulares, así como proponer algunas soluciones a las limitaciones de estos métodos. En el capítulo 2 se presentan las etapas principales en la visualización de datos de volumen: los sistemas de captación, el modelo de voxels, la segmentación o clasificación de los datos y las técnicas de visualización más utilizadas. Se concluye el capítulo introduciendo las etapas específicas de las que consta un sistema de endoscopias virtuales. En el capítulo 3 se describen las características principales de los sistemas de endoscopia virtual, tanto los desarrollados por investigadores de la comunidad científica (presentados en artículos) como los disponibles en el ámbito comercial. También se analiza la utilización de cada una de las técnicas expuestas en el capítulo 2 y sus limitaciones. En el capítulo 4 se exponen los aspectos a tener en cuenta cuando se utilizan texturas 3D como técnica de visualización en endoscopias virtuales. Se presentan los factores que pueden reducir la calidad de los resultados, se analizan las soluciones planteadas, se describen algunas propuestas propias para mejorar calidad y rendimiento, y se evalúan los resultados. La memoria acaba con el capítulo 5 donde se presentan las conclusiones y el trabajo futuro. Se incluye un anexo donde se describe el sistema desarrollado para evaluar las técnicas analizadas en esta tesis y el código fuente de los shaders utilizados

    Depth-enhanced maximum intensity projection

    Get PDF
    The two most common methods for the visualization of volumetric data are Direct Volume Rendering (DVR) and Maximum Intensity Projection (MIP). Direct Volume Rendering is superior to MIP in providing a larger amount of properly shaded details, because it employs a more complex shading model together with the use of user-defined transfer functions. However, the generation of adequate transfer functions is a laborious and time costly task, even for expert users. As a consequence, medical doctors often use MIP because it does not require the definition of complex transfer functions and because it gives good results on contrasted images. Unfortunately, MIP does not allow to perceive depth ordering and therefore spatial context is lost. In this paper we present a new approach to MIP rendering that uses depth and simple color blending to disambiguate the ordering of internal structures, while maintaining most of the details visible through MIP. It is usually faster than DVR and only requires the transfer function used by MIP rendering.Peer ReviewedPostprint (author’s final draft

    Relief impostor selection for large scale urban rendering

    Get PDF
    Image-based rendering techniques are often the preferred choice to accelerate the exploration of massive outdoor models and complex human-made structures. In the last few years, relief mapping has been shown to be extremely useful as a compact representation of highly-detailed 3D models. In this paper we describe a rendering system for interactive, high-quality visualization of large scale urban models through a hierarchical collection of properly-oriented relief-mapped polygons. At the heart of our approach is a visibilityaware algorithm for the selection of the set of viewing planes supporting the relief maps. Our selection algorithm optimizes both the sampling density and the coverage of the relief maps and its running time is mostly independent on the underlying geometry. We show that our approach is suitable for navigating through large scale urban models at interactive rates while preserving both geometric and appearance details.Postprint (published version

    Improving perception accuracy in bar charts with internal contrast and framing enhancements

    Get PDF
    Bar charts are among the most commonly used visualization graphs. Their main goal is to communicate quantities that can be visually compared. Since they are easy to produce and interpret, they are found in any situation where quantitative data needs to be conveyed (websites, newspapers, etc.). However, depending on the layout, the perceived values can vary substantially. For instance, previous research has shown that the positioning of bars (e.g. stacked vs separate) may influence the accuracy in bar ratio length estimation. Other works have studied the effects of embellishments on the perception of encoded quantities. However, to the best of the authors’ knowledge, the effect of perceptual elements used to reinforce the quantity depicted within the bars, such as contrast and inner lines, has not been studied in depth. In this research we present a study that analyzes the effect of several internal contrast and framing enhancements with respect to the use of basic solid bars. Our results show that the addition of minimal visual elements that are easy to implement with current technology can help users to better recognize the amounts depicted by the bar charts.Peer ReviewedPostprint (author's final draft

    Vicinity Occlusion Maps: Enhanced Depth Perception of Volumetric Models

    Get PDF
    Volume models often show high depth complexity. This poses di±culties to the observer in judging the spatial relationships accurately. Illustrators usually use certain techniques such as halos or edge darkening in order to enhance depth perception of certain structures. Halos may be dark or light, and even colored. Halo construction on a volumetric basis impacts rendering performance due to the complexity of the construction process. In this paper we present Vicinity Occlusion Maps: a simple and fast method to compute the light occlusion due to neighboring voxels. Vicinity Occlusion Maps may be used to generate flexible halos around objects or selected structures in order to enhance depth perception or accentuate the presence of some structures in volumetric models at a low cost. The user may freely select the structure that requires the halos to be generated, its color and size, and our proposed application generates those in real time. They may also be used to perform vicinity shading in realtime, or even to combine both effects.Peer ReviewedPostprint (author’s final draft

    Perceptual effects of volumetric shading models in stereoscopic desktop-based environments

    Get PDF
    Throughout the years, many shading techniques have been developed to improve the conveying of information in Volume Visualization. Some of these methods, usually referred to as realistic, are supposed to provide better cues for the understanding of volume data sets. While shading approaches are heavily exploited in traditional monoscopic setups, no previous study has analyzed the effect of these techniques in Virtual Reality. To further explore the influence of shading on the understanding of volume data in such environments, we carried out a user study in a desktop-based stereoscopic setup. The goals of the study were to investigate the impact of well-known shading approaches and the influence of real illumination on depth perception. Participants had to perform three different perceptual tasks when exposed to static visual stimuli. 45 participants took part in the study, giving us 1152 trials for each task. Results show that advanced shading techniques improve depth perception in stereoscopic volume visualization. As well, external lighting does not affect depth perception when these shading methods are applied. As a result, we derive some guidelines that may help the researchers when selecting illumination models for stereoscopic rendering.Peer ReviewedPostprint (author's final draft

    The virtual magic lantern: an interaction metaphor for enhanced medical data inspection

    Get PDF
    In this paper we present the Virtual Magic Lantern (VML), an interaction tool tailored to facilitate volumetric data inspection. It behaves like a lantern whose virtual illumination cone provides the focal region which is visualized using a secondary transfer function or different rendering style. This may be used for simple visual inspection, surgery planning, or injure diagnosis. The VML is a particularly friendly and intuitive interaction tool suitable for an immersive Virtual Reality setup with a large screen, where the user moves a Wanda device, like a lantern pointing to the model. We show that this inspection metaphor can be efficiently and easily adapted to a GPU ray casting volume visualization algorithm. We also present the Virtual Magic Window (VMW) metaphor as an efficient collateral implementation of the VML, that can be seen as a restricted case where the lantern illuminates following the viewing direction, through a virtual window created as the intersection of the virtual lantern (guided by the Wanda device) and the bounding box of the volume.Peer ReviewedPostprint (author’s final draft

    Inspección Interactiva de Estructuras Anatómicas Tubulares

    No full text
    El objetivo que se persigue con esta tesis es analizar y evaluar los diferentes sistemas de visualización de datos volumétricos utilizados para realizar inspecciones virtuales de estructuras tubulares, así como proponer algunas soluciones a las limitaciones de estos métodos. En el capítulo 2 se presentan las etapas principales en la visualización de datos de volumen: los sistemas de captación, el modelo de voxels, la segmentación o clasificación de los datos y las técnicas de visualización más utilizadas. Se concluye el capítulo introduciendo las etapas específicas de las que consta un sistema de endoscopias virtuales. En el capítulo 3 se describen las características principales de los sistemas de endoscopia virtual, tanto los desarrollados por investigadores de la comunidad científica (presentados en artículos) como los disponibles en el ámbito comercial. También se analiza la utilización de cada una de las técnicas expuestas en el capítulo 2 y sus limitaciones. En el capítulo 4 se exponen los aspectos a tener en cuenta cuando se utilizan texturas 3D como técnica de visualización en endoscopias virtuales. Se presentan los factores que pueden reducir la calidad de los resultados, se analizan las soluciones planteadas, se describen algunas propuestas propias para mejorar calidad y rendimiento, y se evalúan los resultados. La memoria acaba con el capítulo 5 donde se presentan las conclusiones y el trabajo futuro. Se incluye un anexo donde se describe el sistema desarrollado para evaluar las técnicas analizadas en esta tesis y el código fuente de los shaders utilizados

    Depth-enhanced maximum intensity projection

    No full text
    The two most common methods for the visualization of volumetric data are Direct Volume Rendering (DVR) and Maximum Intensity Projection (MIP). Direct Volume Rendering is superior to MIP in providing a larger amount of properly shaded details, because it employs a more complex shading model together with the use of user-defined transfer functions. However, the generation of adequate transfer functions is a laborious and time costly task, even for expert users. As a consequence, medical doctors often use MIP because it does not require the definition of complex transfer functions and because it gives good results on contrasted images. Unfortunately, MIP does not allow to perceive depth ordering and therefore spatial context is lost. In this paper we present a new approach to MIP rendering that uses depth and simple color blending to disambiguate the ordering of internal structures, while maintaining most of the details visible through MIP. It is usually faster than DVR and only requires the transfer function used by MIP rendering.Peer Reviewe
    corecore